
DYNAMIC MRI WITH COMPRESSED SENSING IMAGING  
USING TEMPORAL CORRELATIONS 

  
Jim Ji, Tao Lang  

Texas A&M University, College Station, Texas 77840, USA 
E-Mail: jimji@tamu.edu 

 
ABSTRACT 

 
Compressed Sensing (CS) is a recently emerged technique 
for reconstructing signals from data sampled under the 
Nyquist rate. It takes advantage of the signal sparsity in a 
transformed domain to reconstruct high-resolution signals 
from reduced data. This paper presents a CS imaging 
method for dynamic magnetic resonance imaging. 
Specifically, a difference operator is applied to the temporal 
data frames to enhance the spatial signal sparsity for CS 
reconstruction. The new algorithm method was assessed 
using simulated and in-vivo dynamic imaging data. The 
result shows that the new method can obtain higher 
resolution than zero-padded Fourier reconstruction and the 
Keyhole method, and it results in reduced artifacts and noise 
than conventional CS reconstruction where no temporal 
information is used. It also shows that the new CS dynamic 
imaging method does not suffer substantial signal-to-noise 
loss.  
 
Index Terms— MRI, compressed sensing, dynamic MRI 
image reconstruction 
 

1. INTRODUCTION 
 
Dynamic contrast-enhanced (DCE) magnetic resonance 
imaging (MRI) is an effective noninvasive tumor diagnosis 
method. In this method, an image sequence, i.e., “movie”, is 
acquired before, during, and after the administration of a 
magnetic resonance (MR) contrast agent such as Gd-DTPA 
(Magnevist®, Berlex Laboratories). The quantitative 
pharmacokinetic analysis of the contrast agent from the 
image sequence provides useful information about the 
angiogenesis and metabolism, which can be potentially used 
to characterize tumors (malignant or benign) and their 
response to therapy [1].  
 

In collecting the DCE-MRI images, both high spatial and 
high temporal resolutions are desirable: the former helps to 
depict the morphology of tumors, while the later is necessary 
for describing the wash-in and wash-out contrast kinetics. 
Due to the limited data acquisition speed of MRI, it is often 
difficult to collect all the necessary k-space data within the 
desired imaging time using the conventional fast sequences 
alone, especially in 3D MRI of large fields of view (FOV). 

For example, using a state-of-the-art MR scanner and fast 
gradient-echo pulse sequence, acquiring one 3D multiple 
slice image with 128 in-plane phase encodings takes more 
than 10 seconds. However, the desired temporal resolution 
would be less than 4 seconds for tracer kinetics modeling [2] 
and subsecond for measuring tumor microcirculation [3].  
 
Several fast imaging methods can be used to address this 
problem such as parallel imaging with multiple-channel 
receivers [4,5], and data sharing methods (e.g., Keyhole [6] 
and RIGR (Reduced-encoding Imaging by 
Generalized-series Reconstruction) [7]). Parallel imaging 
requires array coils and multiple-channel receivers which 
may not be available for the object to be imaged, e.g., 
certain body geometry or small animals. In addition, 
increased imaging speed of parallel imaging generally 
comes with a SNR penalty. In data sharing methods, only a 
reduced set of k-space data is acquired (therefore increasing 
temporal resolution). In image reconstruction, full k-space 
datasets are synthesized from the reduced datasets using 
prior information from a high-resolution reference image 
acquired before the dynamic process starts. In doing so, both 
methods assume that the images features in the dynamic 
images are strongly correlated with those in the reference. 
 
Compressed Sensing (CS) is a recently emerged technique 
that has been used for fast MRI of brain and angiography 
[8,9,10]. A salient feature of CS imaging is that if an image 
has a sparse representation, either in the spatial domain or a 
transform domain, then it can be recovered from 
randomly undersampled k-space data using a nonlinear 
reconstruction scheme. This implies that compressible 
signals can be reconstructed from a reduced number of data 
samples, thereby increasing imaging speed, without 
reference information. A key in CS imaging is the 
sparsifying transform which maps the original image to a 
sparse representation.  
 
This paper presents a CS imaging method for dynamic 
magnetic resonance imaging. Specifically, a difference 
operator is applied to the successive temporal data frames to 
enhance the spatial signal sparsity for CS reconstruction. 
The new algorithm method was assessed using simulated 
and in-vivo dynamic imaging data. The result shows that the 
new method can obtain higher resolution than zero-padded 
Fourier reconstruction and the Keyhole method, and it 
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results in reduced artifacts and noise than conventional CS 
reconstruction where no temporal information is used. It 
also shows that the new CS dynamic imaging method does 
not suffer substantial signal-to-noise (SNR) loss. 
 
 

2. METHOD 
 
The basic idea of the new method is to utilize the temporal 
correlation of the DCE-MRI frames and the CS 
reconstruction to obtain dynamic images with high spatial 
and temporal resolution. In the new method, a 
high-resolution reference image is acquired before or after 
contrast injection. The dynamic data frames are 
undersampled using randomly selected phase encodings 
(with increased density weighting in the central k-space). 
The reduced sampling can be use either to acquire more 
image frames per second, or to increase the coverage of the 
k-space area in each frame to improve spatial resolution.  
 
After data acquisition, the new method reconstructs the 
dynamic image using the following model: 

        ref diffI I I               (1)  
where Idiff represents the desirable difference information 
that can be extracted from the reference image (Iref) and the 
intermediate image (I) [4]. Conventionally, both 
high-resolution reference and high-resolution dynamic 
images are needed to obtain high-resolution difference 
information. The key idea of this paper is to take advantage 
of the characteristics of the difference image diffI , which is 
spatially sparse by nature because similar structures in both 
the dynamic and reference images will not show up in diffI . 
To effectively use this idea, Eq. (1) is rewritten as a 
corresponding k-space signal model  

diff refd d d               (2) 
Using this model, the CS algorithm is applied to reconstruct 

diffI  directly from the k-space difference signal as 
described in Eq. (2). Specifically, after acquiring the 
reduced k-space data sets according to the random pattern 
required by the CS imaging, the difference data is taken 
according to Eq. (2). Then the difference image is 
reconstructed by optimizing the following cost function, 
similar to the approach presented in [10]:  

2

1 1
( ) ( )diff diff diff L diff TV diffI FI d WI TV I (3) 

where F  is the forward Fourier transform matrix, 1L  
and TV are two regularization parameters. The 
matrixW represents a sparsifying transform. In this paper, W 
is derived from a discrete wavelet transform at level 4 using 
a biorthogonal kernel. The matrix TV takes the total 
variations of the image based on the second-order 
derivatives. 

1
stands taken the L1 norm.  

This reconstruction problem is highly non-linear and there is 
no analytical solution for Eq. (3). However, the problem is 
general convex therefore a conjugate gradient method can 
be used to search for the optimal solution. In this paper, the 
optimization was performed using the SparseMRI V0.2 
program [10]. 
 
 

3. RESULTS 
 
To test the proposed method and characterize its 
performance, both computer simulations and in-vivo 
imaging results were performed. In these studies, 
high-resolution dynamic images were acquired using 128 
phase encodings. The semi-random sampling pattern used in 
the CS imaging was generated using a center-weighted 
fashion along the phase encoding dimension (vertical), i.e., 
the central k-space has a relatively larger sampling density 
than the outer k-space. The actual data used in the CS 
reconstruction was obtained by retrospective decimation of 
the high-resolution data according to the sampling pattern.  
This decimation corresponds to a four time faster imaging 
time when applied in practice. Reconstructions were 
evaluated in terms of resolution, SNR, and artifacts. All 
processing were performed on a PC workstation with 1.86 
GHz CPU and 1.25 GB memory.  
 
3.1 Computer simulations 
 
Simulated dynamic “Shepp-Logan” head phantom datasets 
was generated using the phantom function and Fourier 
transform in Matlab (Mathworks, Natick, MA). The 
phantom consists of multiple elliptical features represents 
anatomical features of various sizes. To simulate the 
dynamic contrast enhancement, the intensity of the three 
“dots” in the middle area of the phantom was doubled from 
the reference image to the dynamic frame. Next, the two 128 
by 128 images were Fourier transformed and shifted to 
simulate the two k-space data with 128 encodings. 
Subsequently, the k-space data of the dynamic data was 
subsampled using a center-weighted randomized sampling 
mask along the vertical dimension. Only 32 encodings of the 
dynamic image were kept and used in the reconstruction. As 
described, the reconstruction from the proposed method 
corresponds to the difference information. For comparison, 
difference information from three different reconstruction 
methods were presented: by two zero-padded Fourier 
transform reconstructions from the central 32 encodings; by 
Keyhole reconstruction using 32 central phase encodings 
and the reference data; and by the conventional CS 
reconstruction reconstructing each images from the 32 
random encodings. For the CS reconstructions, the 
regularization parameters used were experimentally set 
to 1 0.005L  and 0.0002TV .  
 
The top row of Figure 1 shows the reconstruction of the 
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dynamic information from (a) low-resolution (LR) by 
zero-pad Fourier transform; (b) Keyhole; (c) conventional 
CS reconstruction (ConvCS); and (d) the proposed method 
(DynCS).  The bottom row shows the corresponding 1D 
profiles at the locations indicated by the white line on the 
top-left image. Clearly both LR and ConvCS reconstructions 
contains artifacts along the “head” contour, due to the 
ringing artifacts. In addition, the LR reconstruction shows 
reduced resolution, as indicated by the blurring of its 1D 
rectangular profile. Both ConvCS and DynCS produced less 
noisy images than the other two methods.    
 
3.2 In-vivo experiment  
 
In addition, the method was tested with in vivo dynamic 
mice tumor data collected on a SISCO 4.7 Tesla system 
using a rapid T1-weighted gradient echo sequence (matrix 
512x128, coronal view, FOV 24cm x 6cm, TR = 63 ms, TE 
= 4.3 ms,  slice thickness = 2 mm, slices = 7, frames = 50, 
averages = 2). The animal model was a female Sprague 
Dawley that was anesthetized via intramuscular injection 
before imaging. The animal was placed in a custom-made 
bed with a single-channel imaging coil used along with a 1 
mM Gd-DTPA imaging fiduciary marker next to the right 
flank.  Each 16 s dynamic acquisition was separated by a 2 
s gradient stabilization delay for a total imaging time of 18 
s. 
 
Figure 2 shows a typical image of the coronal view 
dynamic image frame. For better visualization, only the 
area around the mice’s chest (128 x128), inside the dashed 
white box, will shown later. Figure 3 shows: (a) reference 
image, (b) dynamic image, and (c) the difference image, all 
from 128 phase encodings; and the corresponding 
difference image reconstructed using: (d) Fourier transform 
(LR), (e) Keyhole, (f) conventional CS without temporal 
operator, and (g) the proposed method. Images in (d-f) in 
both figures were reconstructed using 32 encodings, i.e., 
25% of the total phase encoding lines. For (e-f), the 
regularization parameters used were experimentally set 
to 1 0.005L  and 0.0002TV . It shows that the CS 

reconstructions show higher resolution than the Fourier and 
Keyhole images, as expected. In addition, the proposed 
method reconstructs images with reduced artifacts and 
noise than the conventional CS imaging. 
 
To study the effect of the regularization, the two 
regularization parameters were increased or decreased by a 
factor of 10. Image reconstructions and the corresponding 
SNR were evaluated in each combination of the 
regularization parameters. The SNR of the reconstruction 
was evaluated using a region of interest (ROI) and a region 
of region of noise (RON) as indicated by the two black 
boxes, respectively. The SNR was computed as the ratio 
between the signal mean inside ROI and the standard 
deviation inside RON, in the unit of dB.  Figure 3 shows 
the nine reconstructions with different regularization 
parameters.  

Table 1 shows the corresponding SNR measured from these 
reconstructions. From these results, it appears that the new 
method is not very sensitive the selection of the 
regularization parameters, even the parameters vary by a 
factor of 1,000. Secondly, larger L1 regularization helps 
suppress the ringing artifacts. In addition, increasing the TV 
regularization can reduces noise but leads to noticeable loss 
of resolution.   

 

 
Figure 1. Simulated DCE MRI of a phantom. (Top) 
Reconstruction from four methods with factor-4 acceleration; 
(Bottom) One-dimensional profiles corresponding to the location 
at the dashed vertical line. 

Figure 2. One representative 
high- resolution image and the 
localized chest area (dashed 
white box), region of signal 
(ROS), and region of noise 
(RON) (black boxes). The ROS 
and RON masks will be used to 
evaluate signal-to-noise ratio of 
the reconstructed images. 

 

 

Table 1. The SNR of reconstructed images with 
different regularization parameters (unit: dB). 
 

 TV=0.002 0.0002 0.0002

L1=0.05 35.9 34.0 32.7 
   0.005 28.7 26.1 25.9 
  0.0005 30.1 27.4 26.1 
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4. CONCLUSIONS AND DISCUSSION 

 
A CS imaging method for accelerating dynamic contrast 
enhanced MRI was presented. Computer simulations and 
in-vivo dynamic imaging results showed that within the 
same data acquisition time, the new method can obtain 
higher resolution than zero-padded Fourier reconstruction 
and the Keyhole method, and it results in reduced artifacts 
and noise than conventional CS reconstruction. It also 
shows that the new CS dynamic imaging method does not 
suffer substantial SNR loss, and the method is not sensitive 
to the selection of regularization parameters.  
 
Compressed Sensing has proven to be an effective fast MR 
imaging method. The proposed method took advantage of 
the temporal redundancy between dynamic image frames to 
obtain improved image reconstruction quality within this 
framework. Several technical issues need to be addressed 
before the method can be fully used for practical 
applications. First, automatic selection of the two 
regularization parameter and the wavelet sparsifying 
transform is required to improve efficiency. Second, we 
have observed in certain types of DCE-MRI, the method is 
sensitivity to inter-frame phase variation. A phase correction 
algorithm should be applied to the complex MRI data in that 
case. Finally, the current non-linear optimization used for 
solving the reconstruction is relatively slow as compared to 
the Fourier transform reconstruction therefore fast algorithm 
for CS imaging will be of significant practical value.   
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Figure 3. The mice DCE-MRI images (chest area as highlighted in Fig. 2): (a) Reference image; (b) Dynamic frame; and 
(c) Difference image, from 128 encodings. (d-g) Fourier transform recon, Keyhole recon, the conventional CS recon, and 
the proposed CS recon, respectively, from 32 encodings. 
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